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Piezoelectric materials are materials which produce electric field when stress is applied and
get strained when electric field is applied. Piezoelectric materials are acting as very impor-
tant functional components in sonar projectors, fluid monitors, pulse generators and surface
acoustic wave devices. Wave propagation in porous piezoelectric material having crystal
symmetry 2 is studied analytically. The Christoffel equation is derived. The phase velocities
of propagation of all these waves are described in terms of complex wave velocities. The ef-
fects of phase direction, porosity, wave frequency and piezoelectric interaction on the phase
velocities are studied numerically for a particular model.
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1. Introduction

Piezoelectric materials have widespread applications in many branches of science and technolo-
gy such as electronics, navigation, mechatronics and micro-system technology. In recent years,
piezoelectric materials have been integrated with structural systems to form a class of smart
structures and embedded as layers or fibers into multifunctional composites. The survey of lite-
rature can be found in many related texts and books (Arnau, 2008; Auld, 1973). A short survey
of the piezoelectric wave propagation and resonance were described by Auld (1981). Both, the-
oretical and experimental studies on wave propagation in piezoelectric materials have attracted
attention of scientists and engineers during the last two decades. Nayfeh and Chien (1992) made
a study on ultrasonic wave interaction with fluid-loaded anisotropic piezoelectric substrates and
derived an analytical expression for reflection and transmission coefficients for monoclinic ma-
terials. Zinchuk and Podlipenents (2001) obtained dispersion equations for the acousto-electric
Rayleigh wave in a periodic layer piezoelectric half-space in a study for a 6mm crystal class.
Porous piezoelectric materials (PPM) are widely used for applications such as low frequency

hydrophones, miniature, accelerometers, vibratory sensors and contact microphones. Experi-
mental studies (Qian et al., 2004; Praveenkumar et al., 2005; Piazza et al., 2006) related to
properties of porous piezoelectric materials and influence of porosity on its properties have been
made by different authors. Gupta and Venkatesh (2006) developed a finite element model to
study the effect of porosity on the electromechanical response of piezoelectric materials. Craciun
et al. (1998) and Gomez et al. (2000) made an experimental study on wave propagation in po-
rous piezoceramics. Vashishth and Gupta (2009a) derived constitutive equations for anisotropic
porous piezoelectric materials. Wave propagation in transversely isotropic porous piezoelectric
materials was studied analytically and numerically by Vashishth and Gupta (2009b).
In this paper, the wave propagation in porous piezoelectric materials having crystal sym-

metry 2 is studied. The constitutive equations are formulated for porous piezoelectric materials
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having crystal symmetry 2. The Christoffel equation is derived analytically and its solutions
are obtained numerically. The variation of phase velocities with the direction of propagation,
porosity, piezoelectricity and viscosity is studied numerically for a particular model.

2. Governing equations and their solution

The constitutive equations for anisotropic porous piezoelectric materials (Vashishth and Gupta,
2009a) are

σij = cijklεkl +mijε
∗ + ekijφ,k + ζkijφ

∗
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(2.1)

where σij/σ
∗ are the stress components acting on the solid/fluid phase of a porous aggregate.

εij/ε
∗ are strain tensor components for the solid/fluid phase, respectively. φ/φ∗ and Di/D

∗

i

are electric potentials and electric displacement components for the solid/fluid phase of the
porous bulk material, respectively. cijkl are elastic stiffness constants. The elastic constant R
measures the pressure to be exerted on the fluid to push its unit volume into the porous matrix.
ekij/e

∗

i , ξij/ξ
∗

ij are piezoelectric and dielectric constants for the solid/fluid phase, respectively.

mij; ζkij, ζ̃i; Aij are the parameters which take into account the elastic; piezoelectric; dielectric
coupling between the two phases of the porous aggregate.

The coefficient matrix for porous piezoelectric materials, having crystal symmetry 2 (Auld,
1973) is




c11 c12 c13 0 0 c16 m11 0 0 −e31 0 0 −ζ31
c12 c22 c23 0 0 c26 m11 0 0 −e32 0 0 −ζ32
c13 c23 c33 0 0 c36 m33 0 0 −e33 0 0 −ζ33
0 0 0 c44 c45 0 0 −e14 −e24 0 −ζ14 −ζ24 0
0 0 0 c45 c55 0 0 −e15 −e25 0 −ζ15 −ζ25 0
0 0 0 0 0 c66 m12 0 0 −e36 0 0 −ζ36
m11 m11 m33 0 0 m12 R 0 0 −ζ̃3 0 0 −e∗3
0 0 0 e14 e15 0 0 ξ11 ξ12 0 A11 A12 0
0 0 0 e24 e25 0 0 ξ12 ξ22 0 A12 A22 0

e31 e32 e33 0 0 e36 ζ̃3 0 0 ξ33 0 0 A33
0 0 0 ζ14 ζ15 0 0 A11 A12 0 ξ∗11 ξ∗12 0
0 0 0 ζ24 ζ25 0 0 A12 A22 0 ξ∗12 ξ∗22 0
ζ31 ζ32 ζ33 0 0 0 e∗3 0 0 A33 0 0 ξ∗33




(2.2)

The equations of motion for a fluid-saturated porous piezoelectric medium, in the absence of
body forces, are (Vashishth and Gupta, 2009a)

σij,j = ρ11üj + ρ12Ü
∗

j σ∗,i = ρ12üj + ρ22Ü
∗

j

Di,i = 0 D∗i,i = 0
(2.3)

where ui/U
∗

i are the components of mechanical displacement for the solid/fluid phase of the
porous aggregate. ρ11, ρ12 and ρ22 are dynamical coefficients.

For the propagation of plane waves, let us assume that

uj = Bj exp[iω(pkxk − t)] U∗j = Fj exp[iω(pkxk − t)]

φ = G exp[iω(pkxk − t)] φ∗ = H exp[iω(pkxk − t)]
(2.4)
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where i =
√

−1, pk are the components of the slowness vector p. These can be written as
pk = nk/V in terms of phase velocity v, where nk are components of the unit vector normal to
the wave surface. ω is the circular frequency of waves and t is the time. Making use of equations
(2.1)-(2.4), we obtain a system of equations in unknowns Bj, Fj (j = 1, 2, 3), G and H, which
is given as follows
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The condition of existence of a non-trivial solution of the system leads to

x1V
8 + x2V

6 + x3V
4 + x4V

2 + x5 = 0 (2.6)

where x1, x2, x3, x4, x5 are coefficients which have been calculated symbolically.

On solving equation (2.6), we obtain 4 complex roots Vj (j = 1, 2, 3, 4). Corresponding to
these 4 complex roots, we get 4 complex wave velocities vj of four waves. Thus we obtain four
plane harmonic waves propagating along the given phase direction in the monoclinic porous
piezoelectric material. The wave with the largest phase velocity is termed as stiffened quasi-P1
wave, and the wave with the smallest phase velocity is termed as quasi-P2 wave. The other two
waves are termed as quasi-S1 and quasi-S2 waves.

3. Numerical discussion

The analytical expressions of the phase velocity of propagation and the attenuation quality
factor of stiffened quasi P1, P2 and S1, S2 waves are computed numerically for a particular
model Barium Sodium Niobate. Following Auld (1973), the elastic, piezoelectric and dielectric
constants for the monoclinic crystal are given in Table 1.
Figure 1 exhibits the variation of phase velocities of quasi waves in porous piezoelectric

materials saturated with a viscous fluid for the crystal class 2, respectively with the direction
of propagation (θ, φ). It is seen from these figures that the range of variation of the velocities
of four waves are different. The elevations and depressions of phase velocity surfaces from the
horizontal plane in the figures measure the extent of velocity anisotropy in the medium. The
effects of azimuth variation on the phase velocities of qP1 and qP2 waves are negligible for small
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Table 1. Elastic constants, piezoelectric constants and dielectric constants of Barium Sodium
Niobate crystal

Elastic constants Piezoelectric constants Dielectric constants
[GPa] [C/m2] [nC/(Vm)]

c11 = 150.4 e15 = 11.4 ξ11 = 10.8
c12 = 60.63 e24 = 15.4 ξ13 = 9.8
c13 = 65.94 e31 = −4.32 ξ22 = 14.8
c22 = 160.4 e32 = −6.32 ξ33 = 13.1
c23 = 75.94 e33 = 17.4 ξ∗11 = 0.038
c33 = 145.5 e36 = 0.8 ξ∗13 = 0.09
c44 = 40.86 ζ15 = 0.456 ξ∗22 = 0.055
c55 = 43.86 ζ24 = 0.356 ξ∗33 = 0.049
c66 = 50.37 ζ31 = −1.728 A11 = 0.018
m11 = 8.8 ζ32 = −0.2728 A13 = 0.04
m13 = 11.5 ζ33 = 0.696 A22 = 0.031
m22 = 16.8 ζ36 = 0.08 A33 = 0.015
m33 = 5.2 e∗3 = −3.6

R = 20 ζ̃3 = −7.5

values of θ but noticeable for large values of θ. The phase velocity of qP1 wave an increases
with increase in θ but the phase velocity of qP2 wave decreases with an increase in θ. The phase
velocity of qS1 wave first decreases with an increase in θ and attain local minima at θ = 30

◦

and after that it increases with θ. Contrary to this, V4 increases first and then decreases having
the minimum at 45◦ and then increases further.

Fig. 1. Variation of phase velocities of quasi waves with the propagation directions (θ, φ) for Barium
Sodium Niobate crystal of class 2; (a) qP1 wave, (b) qP2 wave, (c) qS1 wave, (d) qS2 wave

Figure 2a depicts the variation of phase velocities with the direction of propagation in PPM
saturated with a non-viscous fluid, for the crystal class 2. The waves are not attenuated in such
a medium. Figures 2b and 2c exhibit the variation of phase velocities in PPM saturated with the
viscous fluid in the low frequency range (LFR) and high frequency range (HFR), respectively.
It is observed that all waves slow down due to the viscous effects of the pore fluid. It is also
observed that the faster the wave is, the larger are effects of viscosity. It is also interesting to note
that the effects of viscosity are not significant in the HFR which reveals the fact that viscosity
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dominates in LFR. Comparison of Figs. 2b and 2c shows that the velocities of all the quasi waves
increase as the frequency shifts from LFR to HFR. The pattern of variation of phase velocities
with the phase directions remain unaffected in either case.

Fig. 2. Effects of viscosity of the pore fluid on the variation of phase velocities of quasi waves with the
direction of propagation (θ, φ) for Barium Sodium Niobate crystal of class 2; (a) without viscous effects,
(b) with viscous effects in the low frequency range, (c) with viscous effects in the high frequency range

The effects of electro-elastic interactions on the phase velocities of quasi waves are observed
for class 2 in Fig. 3. The phase velocity of qP2 wave increases due to piezoelectric interaction
while the effects are not significant in the case of other three waves.

Fig. 3. Effects of piezoelectricity on the variation of phase velocities of quasi waves with the direction of
propagation (θ, φ) for Barium Sodium Niobate crystal of class 2; (a) without effects of piezoelectricity,

(b) with effects of piezoelectricity

Figure 4 shows the variation of phase velocities of qP1, qP2, qS1 and qS2 waves with the
pore volume fraction in LFR and HFR, respectively, for class 2. It is observed that in the
LFR, the phase velocities of all waves decrease with an increase in porosity while they increase
monotonically by a very small amount with porosity in the HFR. The phase velocities of qP1,
qS1 and qS2 waves in the LFR become almost constant when the porosity is greater than 60%.
However, phase velocity of qP2 wave decreases even when the porosity is greater than 60%. Thus
the slowest wave is found to be more sensitive to the porosity of the medium.



576 V. Gupta, A.K. Vashishth

Fig. 4. Variation of phase velocities of quasi waves with porosity f for Barium sodium Niobate crystal
of class 2; (a) LFR, (b) HFR

4. Conclusion

In the present paper, wave propagation in a monoclinic porous piezoelectric material is studied
both analytically and numerically. The four complex roots of the obtained Christoffel equation
define the phase velocities of propagation of four stiffened quasi waves propagating in such
a medium. The variation of phase velocities of these waves with frequency, phase direction
and the porosity is observed numerically for a particular crystal Barium Sodium Niobate. The
phase velocities of all four waves increase with frequency. The phase velocities of all four waves
decrease with porosity in LFR which can be explained on the basis of percolation theory. The
electric-elastic interaction does not affect the behavior of phase velocities with porosity but the
magnitude of quasi P2 wave increases significantly.

References

1. Arnau A. (Eds.), 2008, Piezoelectric Transducers and Applications, Springer

2. Auld B.A., 1973, Acoustic Fields and Waves in Solids, Vol. 1, John Wiley & Sons, Inc.

3. Auld B.A., 1981, Wave propagation and resonance in piezoelectric materials, Journal of Acoustic
Society of America, 70, 6, 1577-1585

4. Craciun F., Guidarelli G., Galassi C., Roncari E., 1998, Elastic wave propagation in porous
piezoelectric ceramics, Ultrasonic, 36, 427-430

5. Gomez T.E., Mulholland A.J., Hayward G., Gomatam J., 2000, Wave propagation in 0-
3/3-3 connectivity composites with complex microstructure, Ultrasonics, 38, 897-907

6. Gupta R.K., Venkatesh T.A., 2006, Electromechanical response of porous piezoelectric mate-
rials, Journal Acta Materialia, 4063-4078

7. Nayfeh A.H., Chien H.T., 1992, Wave propagation interaction with free and fluid loaded piezo-
electric substrates, Journal of Acoustic Society of America, 91, 3126-3135

8. Piazza D., Stoleriu L., Mitoseriu L., Stancu A., Galassi C., 2006, Characterization of
porous PZT ceramics by first order reversal curves (FORC) diagrams, Journal of the European
Ceramic Society, 26, 2959-2962

9. Praveenkumar B., Kumar H.H., Kharat D.K., 2005, Characterization and microstructure of
porous lead zirconate titanate ceramics, Bulletin Material Sciences, 28, 5, 453-455



Effects of piezoelectricity on bulk waves in monoclinic... 577

10. Qian Z., Jin F., Kishimoto K., Wang Z., 2004, Effect of initial stress on the propagation
behavior of SH waves in multilayered piezoelectric composite structures, Sensor and Actuators A,
112, 368-375

11. Vashishth A.K., Gupta V., 2009a, Vibration of porous piezoelectric plates, Journal of Sound
and Vibration, 325, 781-797

12. Vashishth A.K., Gupta V., 2009b, Wave propagation in transversely isotropic porous piezoelec-
tric materials, International Journal of Solids and Structures, 46, 3620-3632

13. Zinchuk L.P., Podlipenets A.N., 2001, Dispersion equations for Rayleigh waves in a piezoelec-
tric periodically layered structure, Journal of Mathematical Sciences, 103, 3, 398-403

Manuscript received February 10, 2015; accepted for print September 29, 2015


